Decomposition of Multimodal Data for Affordance-based Identification of Potential Grasps
نویسندگان
چکیده
In this paper, we apply standard decomposition approaches to the problem of finding local correlations in multi-modal and high-dimensional grasping data, particularly to correlate the local shape of cup-like objects to their associated local grasp configurations. We compare the capability of several decomposition methods to establish these task-relevant, inter-modal correlations and indicate how they can be exploited to find potential contact points and hand postures for novel, though similar, objects.
منابع مشابه
Semantic grasping: planning task-specific stable robotic grasps
We present an example-based planning framework to generate semantic grasps, stable grasps that are functionally suitable for specific object manipulation tasks. We propose to use partial object geometry, tactile contacts, and hand kinematic data as proxies to encode task-related constraints, which we call semantic constraints. We introduce a semantic affordance map, which relates local geometry...
متن کاملLearning Grasp Affordances with Variable Tool Point Offsets
When grasping an object, a robot must identify the available forms of interaction with that object. Each of these forms of interaction, a grasp affordance, describes one canonical option for placing the hand and fingers with respect to the object as an agent prepares to grasp it. The affordance does not represent a single hand posture, but an entire manifold within a space that describes hand p...
متن کاملNoise Effects on Modal Parameters Extraction of Horizontal Tailplane by Singular Value Decomposition Method Based on Output Only Modal Analysis
According to the great importance of safety in aerospace industries, identification of dynamic parameters of related equipment by experimental tests in operating conditions has been in focus. Due to the existence of noise sources in these conditions the probability of fault occurrence may increases. This study investigates the effects of noise in the process of modal parameters identification b...
متن کاملDeep Learning for Detecting Robotic Grasps
We consider the problem of detecting robotic grasps in an RGB-D view of a scene containing objects. In this work, we apply a deep learning approach to solve this problem, which avoids time-consuming hand-design of features. This presents two main challenges. First, we need to evaluate a huge number of candidate grasps. In order to make detection fast, as well as robust, we present a two-step ca...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کامل